Search results for "Polynomial ring"
showing 4 items of 4 documents
Steiner systems and configurations of points
2020
AbstractThe aim of this paper is to make a connection between design theory and algebraic geometry/commutative algebra. In particular, given any Steiner SystemS(t, n, v) we associate two ideals, in a suitable polynomial ring, defining a Steiner configuration of points and its Complement. We focus on the latter, studying its homological invariants, such as Hilbert Function and Betti numbers. We also study symbolic and regular powers associated to the ideal defining a Complement of a Steiner configuration of points, finding its Waldschmidt constant, regularity, bounds on its resurgence and asymptotic resurgence. We also compute the parameters of linear codes associated to any Steiner configur…
Locally tame plane polynomial automorphisms
2010
Abstract For automorphisms of a polynomial ring in two variables over a domain R , we show that local tameness implies global tameness provided that every 2-generated locally free R -module of rank 1 is free. We give examples illustrating this property.
The Herzog-Vasconcelos conjecture for affine semigroup rings
1999
Let S be a simplicial affine semigroup such that its semigroup ring A = k[S] is Buchsbaum. We prove for such A the Herzog-Vasconcelos conjecture: If the A-module Der(k)A of k-linear derivations of A has finite projective dimension then it is free and hence A is a polynomial ring by the well known graded case of the Zariski-Lipman conjecture.
On the regularity and defect sequence of monomial and binomial ideals
2018
When S is a polynomial ring or more generally a standard graded algebra over a field K, with homogeneous maximal ideal m, it is known that for an ideal I of S, the regularity of powers of I becomes eventually a linear function, i.e., reg(Im) = dm + e for m ≫ 0 and some integers d, e. This motivates writing reg(Im) = dm + em for every m ⩾ 0. The sequence em, called the defect sequence of the ideal I, is the subject of much research and its nature is still widely unexplored. We know that em is eventually constant. In this article, after proving various results about the regularity of monomial ideals and their powers, we give several bounds and restrictions on em and its first differences when…